Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Rheum Dis ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38479789

RESUMEN

OBJECTIVES: Osteoarthritis is a complex disease with a huge public health burden. Genome-wide association studies (GWAS) have identified hundreds of osteoarthritis-associated sequence variants, but the effector genes underpinning these signals remain largely elusive. Understanding chromosome organisation in three-dimensional (3D) space is essential for identifying long-range contacts between distant genomic features (e.g., between genes and regulatory elements), in a tissue-specific manner. Here, we generate the first whole genome chromosome conformation analysis (Hi-C) map of primary osteoarthritis chondrocytes and identify novel candidate effector genes for the disease. METHODS: Primary chondrocytes collected from 8 patients with knee osteoarthritis underwent Hi-C analysis to link chromosomal structure to genomic sequence. The identified loops were then combined with osteoarthritis GWAS results and epigenomic data from primary knee osteoarthritis chondrocytes to identify variants involved in gene regulation via enhancer-promoter interactions. RESULTS: We identified 345 genetic variants residing within chromatin loop anchors that are associated with 77 osteoarthritis GWAS signals. Ten of these variants reside directly in enhancer regions of 10 newly described active enhancer-promoter loops, identified with multiomics analysis of publicly available chromatin immunoprecipitation sequencing (ChIP-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) data from primary knee chondrocyte cells, pointing to two new candidate effector genes SPRY4 and PAPPA (pregnancy-associated plasma protein A) as well as further support for the gene SLC44A2 known to be involved in osteoarthritis. For example, PAPPA is directly associated with the turnover of insulin-like growth factor 1 (IGF-1) proteins, and IGF-1 is an important factor in the repair of damaged chondrocytes. CONCLUSIONS: We have constructed the first Hi-C map of primary human chondrocytes and have made it available as a resource for the scientific community. By integrating 3D genomics with large-scale genetic association and epigenetic data, we identify novel candidate effector genes for osteoarthritis, which enhance our understanding of disease and can serve as putative high-value novel drug targets.

2.
Sci Rep ; 13(1): 22796, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38129444

RESUMEN

Functional enrichment analysis of genome-wide association study (GWAS)-summary statistics has suggested that CD4+ T-cells play an important role in asthma pathogenesis. Despite this, CD4+ T-cells are under-represented in asthma transcriptome studies. To fill the gap, 3'-RNA-Seq was used to generate gene expression data on CD4+ T-cells (isolated within 2 h from collection) from peripheral blood from participants with well-controlled asthma (n = 32) and healthy controls (n = 11). Weighted Gene Co-expression Network Analysis (WGCNA) was used to identify sets of co-expressed genes (modules) associated with the asthma phenotype. We identified three modules associated with asthma, which are strongly enriched for GWAS-identified asthma genes, antigen processing/presentation and immune response to viral infections. Through integration of publicly available eQTL and GWAS summary statistics (colocalisation), and protein-protein interaction (PPI) data, we identified PTPRC, a potential druggable target, as a putative master regulator of the asthma gene-expression profiles. Using a co-expression network approach, with integration of external genetic and PPI data, we showed that CD4+ T-cells from peripheral blood from asthmatics have different expression profiles, albeit small in magnitude, compared to healthy controls, for sets of genes involved in immune response to viral infections (upregulated) and antigen processing/presentation (downregulated).


Asunto(s)
Asma , Virosis , Humanos , Estudio de Asociación del Genoma Completo , Asma/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Linfocitos T CD4-Positivos , Virosis/metabolismo , Redes Reguladoras de Genes
3.
Arthritis Rheumatol ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38010198

RESUMEN

OBJECTIVE: There is growing evidence that genetic data are of benefit in the rheumatology outpatient setting by aiding early diagnosis. A genetic probability tool (G-PROB) has been developed to aid diagnosis has not yet been tested in a real-world setting. Our aim was to assess whether G-PROB could aid diagnosis in the rheumatology outpatient setting using data from the Norfolk Arthritis Register (NOAR), a prospective observational cohort of patients presenting with early inflammatory arthritis. METHODS: Genotypes and clinician diagnoses were obtained from patients from NOAR. Six G-probabilities (0%-100%) were created for each patient based on known disease-associated odds ratios of published genetic risk variants, each corresponding to one disease of rheumatoid arthritis, systemic lupus erythematosus, psoriatic arthritis, spondyloarthropathy, gout, or "other diseases." Performance of the G-probabilities compared with clinician diagnosis was assessed. RESULTS: We tested G-PROB on 1,047 patients. Calibration of G-probabilities with clinician diagnosis was high, with regression coefficients of 1.047, where 1.00 is ideal. G-probabilities discriminated clinician diagnosis with pooled areas under the curve (95% confidence interval) of 0.85 (0.84-0.86). G-probabilities <5% corresponded to a negative predictive value of 96.0%, for which it was possible to suggest >2 unlikely diseases for 94% of patients and >3 for 53.7% of patients. G-probabilities >50% corresponded to a positive predictive value of 70.4%. In 55.7% of patients, the disease with the highest G-probability corresponded to clinician diagnosis. CONCLUSION: G-PROB converts complex genetic information into meaningful and interpretable conditional probabilities, which may be especially helpful at eliminating unlikely diagnoses in the rheumatology outpatient setting.

4.
Arthritis Rheumatol ; 75(6): 1007-1020, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36281738

RESUMEN

OBJECTIVE: Systemic sclerosis (SSc) is a complex autoimmune disease with a strong genetic component. However, most of the genes associated with the disease are still unknown because associated variants affect mostly noncoding intergenic elements of the genome. We used functional genomics to translate the genetic findings into a better understanding of the disease. METHODS: Promoter capture Hi-C and RNA-sequencing experiments were performed in CD4+ T cells and CD14+ monocytes from 10 SSc patients and 5 healthy controls to link SSc-associated variants with their target genes, followed by differential expression and differential interaction analyses between cell types. RESULTS: We linked SSc-associated loci to 39 new potential target genes and confirmed 7 previously known SSc-associated genes. We highlight novel causal genes, such as CXCR5, as the most probable candidate gene for the DDX6 locus. Some previously known SSc-associated genes, such as IRF8, STAT4, and CD247, showed cell type-specific interactions. We also identified 15 potential drug targets already in use in other similar immune-mediated diseases that could be repurposed for SSc treatment. Furthermore, we observed that interactions were directly correlated with the expression of important genes implicated in cell type-specific pathways and found evidence that chromatin conformation is associated with genotype. CONCLUSION: Our study revealed potential causal genes for SSc-associated loci, some of them acting in a cell type-specific manner, suggesting novel biologic mechanisms that might mediate SSc pathogenesis.


Asunto(s)
Monocitos , Esclerodermia Sistémica , Humanos , Predisposición Genética a la Enfermedad/genética , Esclerodermia Sistémica/patología , Sitios Genéticos , Genómica
6.
Br J Dermatol ; 187(6): 948-961, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35986704

RESUMEN

BACKGROUND: Bazex-Dupré-Christol syndrome (BDCS; MIM301845) is a rare X-linked dominant genodermatosis characterized by follicular atrophoderma, congenital hypotrichosis and multiple basal cell carcinomas (BCCs). Previous studies have linked BDCS to an 11·4-Mb interval on chromosome Xq25-q27.1. However, the genetic mechanism of BDCS remains an open question. OBJECTIVES: To investigate the genetic aetiology and molecular mechanisms underlying BDCS. METHODS: We ascertained multiple individuals from eight unrelated families affected with BDCS (F1-F8). Whole-exome (F1 and F2) and genome sequencing (F3) were performed to identify putative disease-causing variants within the linkage region. Array comparative genomic hybridization and quantitative polymerase chain reaction (PCR) were used to explore copy number variations, followed by long-range gap PCR and Sanger sequencing to amplify the duplication junctions and to define the head-tail junctions. Hi-C was performed on dermal fibroblasts from two affected individuals with BDCS and one control. Public datasets and tools were used to identify regulatory elements and transcription factor binding sites within the minimal duplicated region. Immunofluorescence was performed in hair follicles, BCCs and trichoepitheliomas from patients with BDCS and sporadic BCCs. The ACTRT1 variant c.547dup (p.Met183Asnfs*17), previously proposed to cause BDCS, was evaluated with t allele frequency calculator. RESULTS: In eight families with BDCS, we identified overlapping 18-135-kb duplications (six inherited and two de novo) at Xq26.1, flanked by ARHGAP36 and IGSF1. Hi-C showed that the duplications did not affect the topologically associated domain, but may alter the interactions between flanking genes and putative enhancers located in the minimal duplicated region. We detected ARHGAP36 expression near the control hair follicular stem cell compartment, and found increased ARHGAP36 levels in hair follicles in telogen, in BCCs and in trichoepitheliomas from patients with BDCS. ARHGAP36 was also detected in sporadic BCCs from individuals without BDCS. Our modelling showed the predicted maximum tolerated minor allele frequency of ACTRT1 variants in control populations to be orders of magnitude higher than expected for a high-penetrant ultra-rare disorder, suggesting loss of function of ACTRT1 variants to be an unlikely cause for BDCS. CONCLUSIONS: Noncoding Xq26.1 duplications cause BDCS. The BDCS duplications most likely lead to dysregulation of ARHGAP36. ARHGAP36 is a potential therapeutic target for both inherited and sporadic BCCs. What is already known about this topic? Bazex-Dupré-Christol syndrome (BDCS) is a rare X-linked basal cell carcinoma susceptibility syndrome linked to an 11·4-Mb interval on chromosome Xq25-q27.1. Loss-of-function variants in ACTRT1 and its regulatory elements were suggested to cause BDCS. What does this study add? BDCS is caused by small tandem noncoding intergenic duplications at chromosome Xq26.1. The Xq26.1 BDCS duplications likely dysregulate ARHGAP36, the flanking centromeric gene. ACTRT1 loss-of-function variants are unlikely to cause BDCS. What is the translational message? This study provides the basis for accurate genetic testing for BDCS, which will aid precise diagnosis and appropriate surveillance and clinical management. ARHGAP36 may be a novel therapeutic target for all forms of sporadic basal cell carcinomas.


Asunto(s)
Carcinoma Basocelular , Hipotricosis , Humanos , Carcinoma Basocelular/patología , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN/genética , Células Germinativas/patología , Hipotricosis/genética , Hipotricosis/patología , Proteínas de Microfilamentos
7.
Genome Biol ; 22(1): 247, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34433485

RESUMEN

BACKGROUND: Genome-wide association studies have reported more than 100 risk loci for rheumatoid arthritis (RA). These loci are shown to be enriched in immune cell-specific enhancers, but the analysis so far has excluded stromal cells, such as synovial fibroblasts (FLS), despite their crucial involvement in the pathogenesis of RA. Here we integrate DNA architecture, 3D chromatin interactions, DNA accessibility, and gene expression in FLS, B cells, and T cells with genetic fine mapping of RA loci. RESULTS: We identify putative causal variants, enhancers, genes, and cell types for 30-60% of RA loci and demonstrate that FLS account for up to 24% of RA heritability. TNF stimulation of FLS alters the organization of topologically associating domains, chromatin state, and the expression of putative causal genes such as TNFAIP3 and IFNAR1. Several putative causal genes constitute RA-relevant functional networks in FLS with roles in cellular proliferation and activation. Finally, we demonstrate that risk variants can have joint-specific effects on target gene expression in RA FLS, which may contribute to the development of the characteristic pattern of joint involvement in RA. CONCLUSION: Overall, our research provides the first direct evidence for a causal role of FLS in the genetic susceptibility for RA accounting for up to a quarter of RA heritability.


Asunto(s)
Artritis Reumatoide/genética , Artritis Reumatoide/patología , Fibroblastos/patología , Genómica , Patrón de Herencia/genética , Membrana Sinovial/patología , Adulto , Secuencia de Bases , Cromatina/metabolismo , Bases de Datos Genéticas , Elementos de Facilitación Genéticos/genética , Epigénesis Genética/efectos de los fármacos , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Predisposición Genética a la Enfermedad , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Probabilidad , Receptor de Interferón alfa y beta/metabolismo , Receptores de Interferón/metabolismo , Reproducibilidad de los Resultados , Factores de Riesgo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Adulto Joven
8.
J Invest Dermatol ; 141(8): 1975-1984, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33607115

RESUMEN

Chromatin looping between regulatory elements and gene promoters presents a potential mechanism whereby disease risk variants affect their target genes. In this study, we use H3K27ac HiChIP, a method for assaying the active chromatin interactome in two cell lines: keratinocytes and skin lymphoma-derived CD8+ T cells. We integrate public datasets for a lymphoblastoid cell line and primary CD4+ T cells and identify gene targets at risk loci for skin-related disorders. Interacting genes enrich for pathways of known importance in each trait, such as cytokine response (psoriatic arthritis and psoriasis) and replicative senescence (melanoma). We show examples of how our analysis can inform changes in the current understanding of multiple psoriasis-associated risk loci. For example, the variant rs10794648, which is generally assigned to IFNLR1, was linked to GRHL3, a gene essential in skin repair and development, in our dataset. Our findings, therefore, indicate a renewed importance of skin-related factors in the risk of disease.


Asunto(s)
Cromatina/metabolismo , Predisposición Genética a la Enfermedad , Sitios de Carácter Cuantitativo , Enfermedades de la Piel/genética , Línea Celular Tumoral , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Proteínas de Unión al ADN/genética , Conjuntos de Datos como Asunto , Elementos de Facilitación Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Receptores de Interferón/genética , Factores de Transcripción/genética
9.
Ann Rheum Dis ; 80(3): 321-328, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33106285

RESUMEN

OBJECTIVES: Juvenile idiopathic arthritis (JIA) is the most prevalent form of juvenile rheumatic disease. Our understanding of the genetic risk factors for this disease is limited due to low disease prevalence and extensive clinical heterogeneity. The objective of this research is to identify novel JIA susceptibility variants and link these variants to target genes, which is essential to facilitate the translation of genetic discoveries to clinical benefit. METHODS: We performed a genome-wide association study (GWAS) in 3305 patients and 9196 healthy controls, and used a Bayesian model selection approach to systematically investigate specificity and sharing of associated loci across JIA clinical subtypes. Suggestive signals were followed-up for meta-analysis with a previous GWAS (2751 cases/15 886 controls). We tested for enrichment of association signals in a broad range of functional annotations, and integrated statistical fine-mapping and experimental data to identify target genes. RESULTS: Our analysis provides evidence to support joint analysis of all JIA subtypes with the identification of five novel significant loci. Fine-mapping nominated causal single nucleotide polymorphisms with posterior inclusion probabilities ≥50% in five JIA loci. Enrichment analysis identified RELA and EBF1 as key transcription factors contributing to disease risk. Our integrative approach provided compelling evidence to prioritise target genes at six loci, highlighting mechanistic insights for the disease biology and IL6ST as a potential drug target. CONCLUSIONS: In a large JIA GWAS, we identify five novel risk loci and describe potential function of JIA association signals that will be informative for future experimental works and therapeutic strategies.


Asunto(s)
Artritis Juvenil , Estudio de Asociación del Genoma Completo , Artritis Juvenil/genética , Teorema de Bayes , Sitios Genéticos , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Polimorfismo de Nucleótido Simple
10.
Rheumatology (Oxford) ; 59(11): 3137-3146, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32778885

RESUMEN

Psoriatic arthritis (PsA) is a complex disease where susceptibility is determined by genetic and environmental risk factors. Clinically, PsA involves inflammation of the joints and the skin, and, if left untreated, results in irreversible joint damage. There is currently no cure and the few treatments available to alleviate symptoms do not work in all patients. Over the past decade, genome-wide association studies (GWAS) have uncovered a large number of disease-associated loci but translating these findings into functional mechanisms and novel targets for therapeutic use is not straightforward. Most variants have been predicted to affect primarily long-range regulatory regions such as enhancers. There is now compelling evidence to support the use of chromatin conformation analysis methods to discover novel genes that can be affected by disease-associated variants. Here, we will review the studies published in the field that have given us a novel understanding of gene regulation in the context of functional genomics and how this relates to the study of PsA and its underlying disease mechanism.


Asunto(s)
Artritis Psoriásica/genética , Genómica , Artritis Psoriásica/tratamiento farmacológico , Mapeo Cromosómico , Humanos
11.
BMC Biol ; 18(1): 47, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32366252

RESUMEN

BACKGROUND: Genome-wide association studies (GWAS) have uncovered many genetic risk loci for psoriasis, yet many remain uncharacterised in terms of the causal gene and their biological mechanism in disease. This is largely a result of the findings that over 90% of GWAS variants map outside of protein-coding DNA and instead are enriched in cell type- and stimulation-specific gene regulatory regions. RESULTS: Here, we use a disease-focused Capture Hi-C (CHi-C) experiment to link psoriasis-associated variants with their target genes in psoriasis-relevant cell lines (HaCaT keratinocytes and My-La CD8+ T cells). We confirm previously assigned genes, suggest novel candidates and provide evidence for complexity at psoriasis GWAS loci. For one locus, uniquely, we combine further epigenomic evidence to demonstrate how a psoriasis-associated region forms a functional interaction with the distant (> 500 kb) KLF4 gene. This interaction occurs between the gene and active enhancers in HaCaT cells, but not in My-La cells. We go on to investigate this long-distance interaction further with Cas9 fusion protein-mediated chromatin modification (CRISPR activation) coupled with RNA-seq, demonstrating how activation of the psoriasis-associated enhancer upregulates KLF4 and its downstream targets, relevant to skin cells and apoptosis. CONCLUSIONS: This approach utilises multiple functional genomic techniques to follow up GWAS-associated variants implicating relevant cell types and causal genes in each locus; these are vital next steps for the translation of genetic findings into clinical benefit.


Asunto(s)
ADN/genética , Predisposición Genética a la Enfermedad , Psoriasis/genética , Apoptosis , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Células HaCaT , Humanos , Factor 4 Similar a Kruppel
12.
Bioinformatics ; 36(12): 3625-3631, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32207529

RESUMEN

MOTIVATION: HiChIP is a powerful tool to interrogate 3D chromatin organization. Current tools to analyse chromatin looping mechanisms using HiChIP data require the identification of loop anchors to work properly. However, current approaches to discover these anchors from HiChIP data are not satisfactory, having either a very high false discovery rate or strong dependence on sequencing depth. Moreover, these tools do not allow quantitative comparison of peaks across different samples, failing to fully exploit the information available from HiChIP datasets. RESULTS: We develop a new tool based on a representation of HiChIP data centred on the re-ligation sites to identify peaks from HiChIP datasets, which can subsequently be used in other tools for loop discovery. This increases the reliability of these tools and improves recall rate as sequencing depth is reduced. We also provide a method to count reads mapping to peaks across samples, which can be used for differential peak analysis using HiChIP data. AVAILABILITY AND IMPLEMENTATION: HiChIP-Peaks is freely available at https://github.com/ChenfuShi/HiChIP_peaks. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Programas Informáticos , Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
13.
PLoS One ; 15(3): e0223939, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32196497

RESUMEN

Whilst susceptibility variants for many complex diseases, such as rheumatoid arthritis (RA), have been well characterised, the mechanism by which risk is mediated is still unclear for many loci. This is especially true for the majority of variants that do not affect protein-coding regions. lncRNA represent a group of molecules that have been shown to be enriched amongst variants associated with RA and other complex diseases, compared to random variants. In order to establish to what degree direct disruption of lncRNA may represent a potential mechanism for mediating RA susceptibility, we chose to further explore this overlap. By testing the ability of annotated features to improve a model of disease susceptibility, we were able to demonstrate a local enrichment of enhancers from immune-relevant cell types amongst RA susceptibility variants (log2 enrichment 3.40). This was not possible for lncRNA annotations in general, however a small, but significant enrichment was observed for immune-enriched lncRNA (log2 enrichment 0.867002). This enrichment was no longer apparent when the model was conditioned on immune-relevant enhancers (log2 enrichment -0.372734), suggesting that direct disruption of lncRNA sequence, independent of enhancer disruption, does not represent a major mechanism by which susceptibility to complex diseases is mediated. Furthermore, we demonstrated that, in keeping with general lncRNA characteristics, immune-enriched lncRNA are expressed at low levels that may not be amenable to functional characterisation.


Asunto(s)
Artritis Reumatoide/genética , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad , ARN Largo no Codificante/genética , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple , RNA-Seq , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...